
1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

1

Detecting Mobile Malicious Webpages
in Real Time

Chaitrali Amrutkar, Young Seuk Kim, and Patrick Traynor, Senior Member, IEEE

Abstract—Mobile specific webpages differ significantly from their desktop counterparts in content, layout and functionality. Accordingly,
existing techniques to detect malicious websites are unlikely to work for such webpages. In this paper, we design and implement kAYO,
a mechanism that distinguishes between malicious and benign mobile webpages. kAYO makes this determination based on static
features of a webpage ranging from the number of iframes to the presence of known fraudulent phone numbers. First, we experimentally
demonstrate the need for mobile specific techniques and then identify a range of new static features that highly correlate with mobile
malicious webpages. We then apply kAYO to a dataset of over 350,000 known benign and malicious mobile webpages and demonstrate
90% accuracy in classification. Moreover, we discover, characterize and report a number of webpages missed by Google Safe Browsing
and VirusTotal, but detected by kAYO. Finally, we build a browser extension using kAYO to protect users from malicious mobile websites
in real-time. In doing so, we provide the first static analysis technique to detect malicious mobile webpages.

Index Terms—Mobile security, webpages, web browsers, machine learning.

F

1 INTRODUCTION

Mobile devices are increasingly being used to access
the web. However, in spite of significant advances in
processor power and bandwidth, the browsing experi-
ence on mobile devices is considerably different. These
differences can largely be attributed to the dramatic
reduction of screen size, which impacts the content,
functionality and layout of mobile webpages.

Content, functionality and layout have regularly been
used to perform static analysis to determine malicious-
ness in the desktop space [20], [37], [51]. Features such
as the frequency of iframes and the number of redirec-
tions have traditionally served as strong indicators of
malicious intent. Due to the significant changes made
to accommodate mobile devices, such assertions may
no longer be true. For example, whereas such behavior
would be flagged as suspicious in the desktop setting,
many popular benign mobile webpages require multiple
redirections before users gain access to content. Previous
techniques also fail to consider mobile specific webpage
elements such as calls to mobile APIs. For instance, links
that spawn the phone’s dialer (and the reputation of the
number itself) can provide strong evidence of the intent
of the page. New tools are therefore necessary to identify
malicious pages in the mobile web.

In this paper, we present kAYO1, a fast and reliable
static analysis technique to detect malicious mobile web-

• Chaitrali Amrutkar is with Google. This work was completed while she
was a graduate student at the Georgia Tech Information Security Center
(GTISC), Georgia Institute of Technology, Atlanta, GA 30332, USA. E-
mail:chaitrali.amrutkar@gmail.com

• Young Seuk Kim is with PWC. He completed this work at GTISC,
Georgia Institute of Technology, Atlanta, GA 30332, USA. E-mail:
ykim320@gmail.com

• Patrick Traynor is with the Florida Institute for Cyber Security, University
of Florida, Gainesville, FL 32611, USA. E-mail:traynor@cise.ufl.edu

1. Our technique is called “kAYO” (knockout in boxing terminology)
because it knocks out malicious mobile webpages.

pages. kAYO uses static features of mobile webpages
derived from their HTML and JavaScript content, URL
and advanced mobile specific capabilities. We first exper-
imentally demonstrate that the distributions of identical
static features when extracted from desktop and mobile
webpages vary dramatically. We then collect over 350,000
mobile benign and malicious webpages over a period of
three months. We then use a binomial classification tech-
nique to develop a model for kAYO to provide 90% ac-
curacy and 89% true positive rate. kAYO’s performance
matches or exceeds that of existing static techniques used
in the desktop space. kAYO also detects a number of
malicious mobile webpages not precisely detected by
existing techniques such as VirusTotal and Google Safe
Browsing. Finally, we discuss the limitations of existing
tools to detect mobile malicious webpages and build a
browser extension based on kAYO that provides real-
time feedback to mobile browser users.

We make the following contributions:

• Experimentally demonstrate the differences in the
“security features” of desktop and mobile web-
pages: We experimentally demonstrate that the dis-
tributions of static features used in existing tech-
niques (e.g., the number of redirections) are different
when measured on mobile and desktop webpages.
Moreover, we illustrate that certain features are in-
versely correlated or unrelated to or non-indicative
to a webpage being malicious when extracted from
each space. The results of our experiments demon-
strate the need for mobile specific techniques for
detecting malicious webpages.

• Design and implement a classifier for malicious
and benign mobile webpages: We collect over
350,000 benign and malicious mobile webpages. We
then identify new static features from these web-
pages that distinguish between mobile benign and
malicious webpages. kAYO provides 90% accuracy

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

2
in classification and shows improvement of two or-
ders of magnitude in the speed of feature extraction
over similar existing techniques. We further empir-
ically demonstrate the significance of kAYO’s fea-
tures. Finally, we also identify 173 mobile webpages
implementing cross-channel attacks, which attempt
to induce mobile users to call numbers associated
with known fraud campaigns.

• Implement a browser extension based on kAYO:
To the best of our knowledge kAYO is the first
technique that detects mobile specific malicious
webpages by static analysis. Existing tools such as
Google Safe Browsing are not enabled on the mobile
versions of browsers, thereby precluding mobile
users. Moreover, the mobile specific design of kAYO
enables detection of malicious mobile webpages
missed by existing techniques. Finally, our survey
of existing extensions on Firefox desktop browser
suggests that there is a paucity of tools that help
users identify mobile malicious webpages. To fill
this void, we build a Firefox mobile browser ex-
tension using kAYO, which informs users about the
maliciousness of the webpages they intend to visit
in real-time. We plan to make the extension publicly
available post publication.

We note that we define maliciousness broadly, as is
done in the prior literature on the static detection in the
desktop space [20], [37], [51]. However, because drive-
by-downloads are not at all common in the mobile space
at the time of writing, the overwhelming majority of
detected pages are related to phishing.

2 RELATED WORK

Content-based and in-depth inspection techniques to
detect malicious websites: Dynamic approaches using
virtual machines [45], [51] and honeyclient systems [32],
[42], [46] provide deeper visibility into the behavior of
a webpage. Therefore, such systems have a very low
false positive rate and are more accurate. However,
downloading and executing each webpage impacts per-
formance and hinders scalability of dynamic approaches.
This performance penalty can be avoided by using static
approaches. Static approaches rely on the structural and
lexical properties of a webpage and do not execute the
content of the webpage. One such technique of detecting
malicious URLs is using statistical methods for URL
classification based on a URL’s lexical and host-based
properties [28], [30], [35], [39]. However, URL-based
techniques usually suffer from high false positive rates.
Using HTML and JavaScript features extracted from a
webpage in addition to URL classification helps address
this drawback and provides better results [20], [41],
[55], [59]. Static approaches avoid performance penalty
of dynamic approaches. Additionally, using fast and
reliable static approaches to detect benign webpages can
avoid expensive in-depth analysis of all webpages.
Differences between mobile and desktop websites:
All these approaches for malicious webpage detection

have focused on websites built for desktop browsers
in the past. Mobile browsers have been shown to dif-
fer from their desktop counterparts in terms of se-
curity [13], [14]. Although differences in mobile and
desktop websites have been observed before [19], it is
unclear how these differences impact security. Further-
more, the threats on mobile and desktop websites are
somewhat different [26]. Static analysis techniques using
features of desktop webpages have been primarily stud-
ied for drive-by-downloads on desktop websites [20],
[51], whereas, the biggest threat on the mobile web
at present is believed to be phishing [18]. Efforts in
mitigating phishing attacks on desktop websites include
isolating browser applications of different trust level [29],
email filtering [28], using content-based features [55],
[59] and blacklists [38]. The best-known non-proprietary
content-based approach to detect phishing webpages is
Cantina [59]. Cantina suffers from performance problems
due to the time lag involved in querying the Google
search engine. Moreover, Cantina does not work well
on webpages written in languages other than English.
Finally, existing techniques do not account for new mo-
bile threats such as known fraud phone numbers that
attempt to trigger the dialer on the phone. Consequently,
whether existing static analysis techniques to detect
malicious desktop websites will work well on mobile
websites is yet to be explored.
Mobile application security: Significant work has been
done in the past few years on the security of mobile
applications. Static feature extraction, especially with
respect to permissions, has been one of the most im-
portant early areas of research [21], [23], [25], [27]. Such
techniques have led to dramatically more rapid detection
of malicious applications across a range of marketplaces.
DNS based approaches to detect malicious domains:
A popular approach in detecting malicious activity on
the web is by leveraging distinguishing features between
malicious and benign DNS usage. Both passive DNS
monitoring [15], [17], [49], [58] and active DNS probing
methods [31], [33] have been used to identify malicious
domains. While some of these efforts focused solely
on detecting fast flux service networks [31], [47], [48],
[54], another [17] can also detect domains implementing
phishing and drive-by-downloads. DNS based mech-
anisms do not provide deeper understanding of the
specific activity implemented by a webpage or domain.

3 MOTIVATION

Static analysis techniques to detect malicious websites of-
ten use features of a webpage such as HTML, JavaScript
and characteristics of the URL. Usually, these features
are fed to machine learning techniques to classify benign
and malicious webpages. These techniques are predi-
cated on the assumption that the features are distributed
differently across benign and malicious webpages. Ac-
cordingly, any changes in the distribution of static fea-
tures in benign and/or malicious webpages impacts
classification results of static analysis techniques. While

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

3

(a) (b)

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

Fr
ac

tio
n

of
 to

ta
l w

eb
pa

ge
s

IP addresses returned per URL

Desktop
Mobile

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 to

ta
l w

eb
pa

ge
s

Redirections per webpage

Desktop
Mobile

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 to

ta
l w

eb
pa

ge
s

iframes per webpage

Desktop
Mobile

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50

Fr
ac

tio
n

of
 to

ta
l w

eb
pa

ge
s

Javascript per webpage

Desktop
Mobile

Fig. 1: Normalized density curves of static features. There is substantial difference between the distributions of the
number of (a) iframes, (b) Javascript and (c) redirections when measured on mobile and desktop versions of the
same websites, whereas, the distribution of the number of (d) IP addresses is similar.

successful, these static analysis techniques have been
used exclusively for desktop webpages [20], [51], [59].

Mobile websites are significantly different from their
desktop counterparts in content, functionality and lay-
out. Consequently, existing tools using static features
to detect malicious desktop webpages are unlikely to
work for mobile webpages. We explain four factors that
motivate building separate static analysis techniques to
detect malicious mobile webpages.
1) Differences in content: Mobile websites are often
simpler than their desktop counterparts. Therefore, the
distribution of content-based static features (such as the
number of JavaScripts) on mobile webpages differs from
that of desktop webpages. For example, Figure 1 (a)
and Figure 1 (b) show the normalized density of the
number of iframes and the number of Javascript found in
mobile2 and the corresponding desktop versions of the
top-level webpage of the 10,000 most popular websites
from Alexa [11]. Approximately 90% of mobile webpages
do not have any iframes, whereas the corresponding
desktop webpages have multiple iframes. Desktop web-
pages have more Javascripts than mobile webpages.

Due to the simplicity of mobile webpages, the majority
of other content related static features used in exist-
ing techniques including, the number of images, page
length, the number of hidden elements, and the number
of elements with a small area also differ in magnitude

2. We describe the method used to define and identify mobile
webpages in detail in Section 4.2.

in mobile and desktop webpages.
2) Infrastructure: Website providers use JavaScript or
user agent strings to identify and then redirect mobile
users to a mobile specific version. Figure 1 (c) shows the
normalized density of the number of redirection steps
taken by the desktop and mobile versions of the top
10,000 websites on Alexa before landing on the final
URL3. Even the most popular mobile websites show
multiple redirects, which has traditionally been a prop-
erty of desktop websites hosting malware [51]. However,
multiple redirects does not necessarily indicate bad be-
havior for mobile websites due to the characteristics of
their hosting infrastructure.

We note that not all static features used in existing
techniques differ when measured on mobile and desktop
webpages. For example, the number of IP addresses re-
turned by DNS servers for mobile and desktop versions
of the same sites are comparable. Mobile websites appear
to share their hosting infrastructure with the correspond-
ing desktop websites [36]. We used seven public (Google,
OpenDNS, UltraDNS, Norton, DynDNS, Level3, and
Scrubit) DNS servers to obtain the IP addresses returned
in the DNS A records of mobile and corresponding
desktop URLs of Alexa top 10,000 websites. As seen
in Figure 1 (d), the distributions of the number of IP
addresses returned by the seven DNS servers are similar

3. We use the term final URL to denote the URL that is rendered in
the browser after redirections (if any) from the seed URL. The final
URL may change based on the browser’s user agent.

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

4
for mobile and desktop websites.
3) Impact of screen size: The screen size of a mobile
phone is significantly smaller that that of a desktop
computer. Therefore, a mobile user only sees a part of
the URL of a webpage. Intuitively, the author of a mobile
phishing webpage may only need to include misleading
words at the beginning of the URL and a short URL
might suffice to trick a user.
4) Mobile specific functionality: Mobile websites
enable access to a user’s personal information and
advanced capabilities of mobile devices through web
APIs. Existing static analysis techniques do not consider
these mobile specific functionalities in their feature set.
We argue and later demonstrate that accounting for
the mobile specific functionalities helps identify new
threats specific to the mobile web. For example, the
presence of a known ‘bank’ fraud number on a website
might indicate that the webpage is a phishing webpage
imitating the same bank [16].

Limitations of existing techniques: These discrepancies
between mobile and desktop webpages demand inves-
tigation. Existing static analysis techniques and tools for
detecting malicious webpages are focused on desktop
webpages. Therefore, they are unable to detect mobile specific
threats with high accuracy.4 Secondly, several webpages
built specifically for mobile, return empty pages when
rendered in a desktop browser. Thus, even existing
dynamic analysis techniques that execute websites in
desktop browsers on virtual machines, are ineffective
on such mobile websites. Finally, signature based tools
such as Google Safe Browsing currently only work with
desktop browsers. We manually visited five mobile spe-
cific known malicious webpages collected from Phish-
Tank [6], from the Google Chrome mobile browser. We
observed that these webpages are flagged as malicious
on the Chrome desktop browser, but not on the Chrome
mobile browser whose users are the real targets of the
mobile malicious webpages. Although enabling Google
Safe Browsing in mobile Chrome is an engineering effort,
we argue and later demonstrate that a mobile specific
static technique can also detect new threats previously
unseen by such services.
Goals: Considering the limitations of existing tech-
niques, the goals of this work are three-fold. First,
identifying relevant static features from mobile specific
webpages in the wild. Second, implementing a fast
and reliable static analysis technique to detect malicious
mobile webpages in real-time. And finally, developing
a mobile browser extension that will inspect mobile
webpages in real-time and provide feedback to the user.

4 METHODOLOGY
Our objective is to design and develop a technique to
identify mobile specific malicious webpages in real-time.
We extract static features from a webpage and make

4. We demonstrate this experimentally in Section 5.

predictions about its potential maliciousness. We first
discuss the feature set used in kAYO followed by the
collection process of the dataset.

4.1 kAYO Feature Set
A webpage has several components including HTML
and JavaScript code, images, the URL, and the header.
Mobile specific webpages also access applications run-
ning on a user’s device using web APIs (e.g., the dialer).
We extract structural, lexical and quantitative properties
of such components to generate kAYO’s feature set. We
focus on extracting mobile relevant features that take
minimal extraction time. Our hypothesis is that such
features are strong indicators of whether a webpage has
been built for assisting a user in their web browsing
experience or for malicious purposes.

Our feature set consists of 44 features, 11 of which are
new and not previously identified or used. We describe
these new features in detail. A subset of features in kAYO
have been used by other authors in static inspection of
desktop webpages in the past.5 However, it is important
to note that these features in mobile webpages and
desktop webpages differ in magnitude (e.g., number of
iframes) and show varying correlation with the nature
of the webpage (i.e., malicious/benign).

We divide kAYO’s 44 features into four classes: mobile
specific-, JavaScript, HTML and URL features. To the best
of our knowledge, we are the first to use these mobile
specific features, and do not claim novelty on using
subsets of other previously identified features. Table 1
summarizes the 8 mobile, 10 JavaScript, 14 HTML and 12
URL features. We empirically illustrate the effectiveness
of each of the features in Section 5.2.

4.1.1 Mobile specific features
We collect eight mobile specific features to capture
the advanced capabilities of mobile webpages. Mobile
websites enable access to personal data from a user’s
phone, an experience not offered by desktop websites.
For example, mobile web APIs such as tel: and sms:
spawn the dialer and the SMS applications respectively
on a mobile device. In order to characterize the behavior
of mobile API calls, we extracted the number of API
calls tel:, sms:, smsto:, mms: and mmsto: from each
mobile webpage. We further extracted the target phone
numbers from these API calls. We ran the commercially
available Pindrop Security Phone Reputation System
(PRS) [7] on each phone number. Based on the results of
the PRS, we gave the score of 1/0 (known fraud/benign)
to each phone number scraped from the mobile API
calls, and added the score as a feature in kAYO. We only
extracted phone numbers with API prefixes that could
trigger an application installed on a user’s phone. We

5. A subset of kAYO’s features was selected from prior literature on
desktop webpage classification using static features. Only the features
deemed to be the most critical and definitively applicable to mobile
webpages as shown by manual analysis, were selected based on the
authors’ experience and knowledge of the area.

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

5
Category Features Total # of

features
Mobile specific # of API calls to tel:, sms:, smsto:, mms:, mmsto:, geolocation; # of apk, # of ipa 8

JavaScript presence of JS, noscript, internal JS, external JS, embedded JS; 10# of JS, noscript, internal JS, external JS, embedded JS

HTML

presence of internal links, external links, images; # of internal links, external links, images

14# of cookies from header, secure and HTTPOnly cookies,
presence of redirections and iframes, # of redirects and iframes,

whether webpage served over SSL, % of white spaces in the HTMl content

URL

of misleading words in the URL such as login and bank , length of URL

12# of forward slashes and question marks, digits, dots, hyphens and underscores,
of equal signs and ampersand, subdomains, two letter subdomains, semicolons,

presence of subdomain, % of digits in hostname
Total: 44

TABLE 1: The 44 features of kAYO from four categories. The significance of both new mobile and prior features
res is evaluated in Section 5.2.

did not consider phone number strings simply listed on
webpages without an API prefix.

We argue that due to the popularity of application
markets such as Google play and iTunes, a website host-
ing its own mobile application binary (e.g., .apk or .ipa
files) possibly suggests bad behavior. If we found more
than a threshold (in the few hundreds) of apk/ipa files
on the same webpage, we assumed that the webpage
was a third-party app store (of which there are many)
and was unlikely to be malicious.

4.1.2 JavaScript features

JavaScript enables client-side user interaction, asyn-
chronous communication with servers, and modification
of the DOM objects of webpages on the fly. We extract
10 features that capture the JavaScript relevant static
behavior of a webpage, two of which are new. All the
features are faster to extract than the features based on
JavaScript deobfuscation.

JavaScript found on malicious webpages can be obfus-
cated. Instead of deobfuscating every JavaScript, we ex-
tract simple JavaScript related features from a webpage.
The primary reason in choosing this approach is that
a large number of benign webpages include potentially
dangerous JavaScript code as shown by Yue et al. [57].
For example, 44.4% of the top 6,805 websites from Alexa
use the potentially dangerous eval function. These ob-
servations invalidate the assumption made in existing
techniques [20]; that potentially dangerous JavaScript
keywords are more frequently used in malicious web-
pages. Secondly, external JavaScript can be very large,
sometimes of the order of a few megabytes. Our goal is
to build a real-time browser extension based on kAYO.
Accordingly, we avoided using features that would slow
down the feature extraction process.

We argue that benign webpage writers take effort to
provide good user experience, whereas the goal for ma-
licious webpage authors is to trick users into performing
unintentional actions with minimal effort. We therefore
examine whether a webpage has noscript content and
measure the number of noscript. Intuitively, a benign
webpage writer will have more noscript in the code to
ensure good experience even for a security savvy user.
We add these two newly identified features to our set.

Webpages generally include three types of JavaScript:
internal, external and embedded. An internal JavaScript
is one hosted on the same domain as that of its parent
webpage, whereas, an external JavaScript’s domain is
different from its host’s domain. Since mobile web-
pages are often simpler than desktop webpages and
phishing is the biggest threat on mobile webpages at
present, we expect that benign webpages will include
more external JavaScript for advertisements and analyt-
ics purposes, whereas malicious webpages will have a
lower number of external JavaScript. Accordingly, we
determine whether a webpage holds external and inter-
nal JavaScript, and then extract the number of internal
and external JavaScript from a webpage. Unlike internal
and external JavaScript, embedded JavaScript code is
contained in the webpage. If the number of lines of
JavaScript is relatively small, a webpage with embedded
JavaScript loads faster than pages that must reference
external code. This is because, as the web browser loads
the page and encounters the reference to the external
code, it must make a separate request to the web server
to fetch the code. Webpages built for performance often
use a number of embedded JavaScript. Performance is
critical in the mobile web since it impacts revenue and
user interest [50]. Therefore, we determine whether a
webpage hosts embedded JavaScript and then calculate
the number of embedded JavaScript in a webpage. Our
hypothesis is that on average, benign webpages will
have more embedded JavaScript. Finally, we determine
whether JavaScript is present at all on a webpage, and
measure the total number of JavaScript on the webpage
including embedded, internal and external. Note that we
believe that this feature is indicative, but not an alarm by
itself as malicious pages could also seek to gain revenue
from advertisements.

4.1.3 HTML features

We extract 14 features in total from the HTML code
of each webpage. Popular webpages include a number
of images, and internal and external HTML links for
better user experience. For example, the top-level page
of m.cnn.com includes links to other news articles pub-
lished by CNN (internal HTML links), advertisements
for a local restaurant (external HTML link) and images

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

6
related to the latest breaking news. Accordingly, we first
determine whether a webpage has any images, internal
and external HTML links. We then extract the number of
internal links, external links and images from a webpage
as features of kAYO.

Malicious webpages (especially those implementing
drive-by-downloads and clickjacking) include links to
bad content in iframes [51]. Recall that the distribution of
iframes on mobile webpages is different as compared to
that on desktop webpages. However, we do not rule out
the possibility of a mobile malicious webpage including
malicious content in iframes and consider the presence
and number of iframes in a webpage as features in
kAYO. Past research also shows that malicious websites
take several redirections before leading the user to the
target webpage to avoid DNS based detection [51]. Recall
that mobile webpages generally take at least one or more
redirections since both desktop and mobile versions
of the webpage share hosting infrastructure. Therefore,
we determine whether a webpage was redirected and
then measure the number of redirections the user ex-
periences before landing on the final URL. Finally, we
extract other features such as the percentage of white
spaces in the HTML content, the number of cookies
from the header, the number of secure and HTTPOnly
cookies, and whether the webpage is served over an
SSL connection. Readers are encouraged to refer to prior
literature [20], [41], [59] for more information on the
usefulness of these HTML features.

4.1.4 URL features
Structural and lexical properties of a URL have been
used to differentiate between malicious and benign web-
pages. However, using only URL features for such dif-
ferentiation leads to a high false positive rate. We extract
12 URL features in total.

Authors of phishing webpages often exploit the fa-
miliarity of users to a webpage [22] by including words
in the URL that can mislead a user into believing that
the phishing webpage is the legitimate webpage. Words
such as login and bank are commonly used in the URL
of the login webpage for benign websites that are highly
prone to imitation. Only a part of the URL is visible to
the user of a mobile phone due to the small screen [13].
Therefore, intuitively, the author of a phishing webpage
will include misleading words at the beginning of the
URL. We consider the presence of such words in the
URL as a new feature in kAYO.

A significant number of phishing domain names are
simply IP addresses of machines hosting them [28],
[40]. Therefore, we calculated the number of digits in
a URL and the percentage of digits in the hostname.
Phishing webpage developers usually create a number
of subdomains to include deceptive keywords such as
paypal as a subdomain. This might increase the length
of phishing URLs [40]. Therefore, we include the length
of a URL, whether the URL contains a subdomain,
the number of subdomains, and the number of dots

Mobile Webpage Indicators
Top Level Domain .mobi

Subdomain m., mobile., touch., 3g., sp.,
s., mini., mobileweb., t.

URL Path Prefix /mobile, /mobileweb, /m, /mobi,
/?m=1, /mobil, /m home

TABLE 2: Indicators of mobile specific webpages ex-
tracted by manual analysis of the top-level mobile and
desktop webpages of the 1,000 most popular websites on
Alexa. We identified one top-level domain (TLD), nine
subdomains and seven URL path prefixes.

as features. Our URL feature set also contains the
number of semicolons, equal signs and ampersand
symbols, hyphens and underscores, forward slashes and
question marks. Interested readers are referred to prior
literature [28], [34], [39] for details on the importance of
these URL features.

Note that the HTML, JavaScript and URL features are
not specific to mobile and can be used for analyzing
desktop webpages as well. However, the mobile features
derived from mobile applications such as dialer and SMS
do not apply to desktop webpages.

4.2 Data Collection

Our data gathering process included accumulating
labeled benign and malicious mobile specific webpages.
First, we describe an experiment that identifies and
defines ‘mobile specific webpages’. We then conduct
the data collection process over three months in 2013.
We use these crawls specifically because they are close
to the publication of the related work, making them as
close to equivalent as possible.

Identification of mobile specific webpages: We crawled
the top-level webpage of the 1,000 most popular websites
from Alexa.com [11] using the Android mobile and
desktop Internet Explorer (IE) browsers. We used
Android mobile version 4.0 and IE desktop version 9.0
for Windows 7. We then manually analyzed each pair
of final URLs for the same seed URL when crawled
from each browser. Before classifying a URL as mobile
specific, we confirmed that the final URLs for desktop
and mobile were different for the same seed URL. We
also compared the contents of each pair of desktop and
mobile webpages, and ensured that the two contents
were different. We ignored all the seed URLs that led to
an identical final URL when crawled from the desktop
and the mobile browser. Our analysis identified nine
subdomains (e.g., m.) and seven URL path prefixes
(e.g., /mobile) in the URLs of popular websites to
represent their mobile specific webpages. Additionally,
we considered all URLs with the ‘.mobi’ Top Level
Domain (TLD) to be mobile sites [12]. We defined
a mobile specific webpage as one containing any of
these 17 mobile indicators in the URL and showing

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

7

 0

 200

 400

 600

 800

 1000

 1200

 0 200000 400000 600000 800000 1e+06

o
f m

ob
ile

 w
eb

pa
ge

s/1
0k

 U
RL

s

Alexa rank

Fig. 2: Number of mobile specific websites found in
every 10,000 websites in the Alexa top 1M.

differences in content from the corresponding desktop
webpage. Table 2 summarizes the mobile indicators.

Building the dataset: To generate training data for our
model, we statically crawled the top-level webpage of
the top 1,000,000 most popular websites from Alexa
from an Android mobile browser. We then extracted the
mobile specific webpages using the algorithm described
above. Figure 2 shows the number of top-level mobile
specific webpages found in the dataset. 1,244 out of the
first 10,000 most popular websites offer a mobile specific
version and 763 maintain mobile specific webpages in
the 10,000-20,000 range. From 20,000 onwards upto one
million, the number of mobile specific webpages found
using our algorithm is largely constant. We observed
that 485 out of the top one million Alexa websites have
the ‘.mobi’ TLD. Using the 17 mobile indicators defined
in Table 2, we collected 53,638 mobile specific URLs
at the top-level by statically crawling each website in
Alexa from an Android mobile browser. We then crawled
each of the 53,638 mobile specific websites two levels
deep. Interestingly, we found links to several non-mobile
URLs on the mobile specific webpages. We discarded
non-mobile webpages and were left with 295,512 mobile
URLs at depth two. In total, we derived 349,150 mobile
URLs from the Alexa one million websites.

Gathering data for malicious mobile URLs was chal-
lenging since the mobile web is still evolving and
new threats are emerging. We monitored several public
blacklists [2], [3], [5] continually for three months and
extracted mobile specific URLs from the blacklists. We
set up a continuous feed from two public blacklists
and crawled newly uploaded malicious URLs every
two seconds. We also monitored PhishTank’s [6] online
dataset for mobile specific phishing URLs. After moni-
toring these sources for three months, we gathered data
from 531 top-level and 4,681 depth two mobile specific
malicious URLs. Note that our dataset also contains
mobile URLs that were submitted to the blacklists before
2013, but were live at the time of crawling.

We established ground truth of the labels (mali-

cious/benign) of webpages in our dataset by using
VirusTotal [9] and Google Safe Browsing [10]. The
Google Safe Browsing tool performs both static and
dynamic analysis on webpages [51]. It first discards
benign webpages identified using static analysis and
then performs dynamic analysis on the webpages tagged
as malicious. VirusTotal queries 41 different malware de-
tection tools based on dynamic analysis, crowd sourcing
and signatures. To be conservative, we labeled a URL
as malicious only when Google Safe Browsing tagged
a URL as malicious, or four or more tools queried
by VirusTotal labeled the URL as malicious. We also
performed manual inspection if necessary. For example,
the URLs from PhishTank are crowdsourced, and Google
Safe Browsing and VirusTotal do not detect all valid
URLs from PhishTank as malicious. We manually visited
such URLs to ensure that they are phishing webpages.
Our final dataset consisted of 349,137 benign URLs and
5,231 malicious URLs. We used this dataset to train
kAYO’s model. We note that we waited for a number
of months to determine if many of our pages were ever
classified by this engine, so as to give other detection
tools time to discover the candidate sites [43]. Finally,
we used the lifetime of pages that were clear scams
(e.g., banking pages that disappeared within 24 hours)
to judge a small subset of pages.

5 IMPLEMENTATION AND EVALUATION

We describe the machine learning techniques we consid-
ered to tackle the problem of classifying mobile specific
webpages as malicious or benign. We then discuss the
strengths and weaknesses of each classification tech-
nique, and the process for selecting the best model
for kAYO. We build and evaluate our chosen model
for accuracy, false positive rate and true positive rate.
Finally, we compare kAYO to existing techniques and
empirically demonstrate the significance of kAYO’s fea-
tures. We note that where automated analysis is possible,
we use our full datasets; however, as is commonly done
in the research community, we use randomly selected
subsets of our data when extensive manual analysis and
verification is required.

5.1 Model Selection and Implementation
We treated the problem of detecting malicious webpages
as a binary classification problem. We considered each
known benign mobile webpage as a negative sample
and each known malicious mobile webpage as a pos-
itive sample. We considered a wide range of popular
binary classification techniques in machine learning, but
for space discuss three popular options: Support Vector
Machines (SVM), naı̈ve Bayes and logistic regression.
Support Vector Machines (SVM) is a popular binary
classifier. However, it works well only on a few thousand
samples of data. Due to the scaling problem of SVMs
and our large dataset, SVM was not the best choice for
kAYO.

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Fig. 3: The final ROC curve for kAYO’s logistic regression
model with regularization.

Naı̈ve Bayes is generally used when the values of dif-
ferent features are mutually independent. Many features
that we extracted were mutually dependent. For exam-
ple, the number of scripts in a webpage was depen-
dent on the number of internal, external and embedded
JavaScript in the webpage, which were three other fea-
tures of our model. Since the assumptions required for
optimal performance of naı̈ve Bayes did not hold for our
dataset, we could not use the naı̈ve Bayes classifier.
Logistic Regression is a scalable classification technique
and makes no assumption about the distribution of
values of the features. Therefore, this technique was the
best fit for our dataset. We used the binomial variation
of logistic regression to model kAYO and employed
`1-regularization to avoid overfitting of the data.

We used the scrapy [8] web scraping framework to
crawl the collected mobile URLs. We then built a parser
for extracting features discussed in Section 4.1 from each
input webpage dynamically. The crawler and feature
extraction scripts were implemented in Python. We used
logistic regression on the extracted features for train-
ing and testing. We programmed the logistic regression
model in the numerical computing language Octave [1].
We tested the model on a machine with quad core 3.4
GHz Intel Core i7 processor and 16 GB memory.

5.2 Evaluation

Our dataset contained 349,137 benign URLs and 5,231
malicious URLs. We divided our dataset into three sub-
sets: training, cross-validation and test. We first ran-
domly shuffled the data and set aside 10% of the data
as the test set. The remaining 90% of data was used for
training and 10-fold cross-validation.

For each validation round we calculated the accuracy,
the false positive rate and the true positive rate on the
validation set. We further used `1-regularization to avoid
overfitting. We varied the regularization parameter from
0 to 1,000 in the intervals of 10 and chose the best
parameter. We then plotted a ROC curve by taking the

Factor Cantina [56], [59] kAYO

Designed to detect Phishing Mobile web
threats

Detects pages written in English-only Any language
Avg. feature extraction time 2.82 sec 0.016 sec

Evaluation set size 200 34914(# of webpages)
True positive rate 97% 89%
False positive rate 6% 8%

External dependencies Depends on NoneGoogle search
Detects pages missed by No YesGoogle Safe Browsing?

TABLE 3: Comparison of kAYO with Cantina, a tech-
nique using static webpage features to detect phish-
ing webpages in real-time. kAYO’s evaluation set size
is over two orders of magnitude larger than that of
Cantina. Moreover, kAYO’s feature extraction process is
two orders of magnitude faster than Cantina. Cantina’s
functionality is dependent on external tools unlike kAYO
and Cantina works well only on webpages written in the
English language. kAYO does not have these drawbacks.

mean of all false positive rates6 and false negative rates7

output from every cross-validation step, and found the
best threshold for differentiating between malicious and
benign data. Figure 3 shows the final ROC curve.

kAYO provided 91% true positive rate and 7% false
positive rate on the cross-validation set. We used the
best parameters obtained from the training and cross-
validation steps to test the 10% labeled dataset set aside.
Our test set shows 90% accuracy, 8% false positive rate
and 89% true positive rate. We believe that this rate
is equivalent to that of the desktop-specific schemes,
which use dramatically smaller datasets than our own,
as accuracy falls significantly when datasets increase in
size. We also anticipate that the false positive rate on
the test set would be lower than what was found using
the labeled samples because kAYO detected a number
of malicious mobile URLs in the wild that we hand
verified, and were not detected by tools that we used for
establishing ground truth of our datatset. More details
on examples and in-depth analysis of mobile malicious
URLs detected by kAYO in the wild can be found in
Section 7.
Comparison with existing static techniques:8 We have
identified and used 11 new mobile-relevant features
previously not studied. We note that none of the ex-
isting techniques account for mobile specific features
considered in kAYO. The non-commercial static analysis
technique closest to kAYO is Cantina [59]. It detects
phishing webpages in real-time using static features of
webpages. We compare kAYO with the methodology,

6. False positive rate is equal to (1 - recall) or (1 - sensitivity).
7. False negative rate is also known as precision or specificity.
8. To the best of our knowledge, kAYO is the first technique that

uses static features of webpages to detect malicious mobile pages.
Therefore, we compare against existing desktop techniques. We also
could not secure access to the code or software of these related desktop
techniques from the respective authors upon request. Thus, our only
option was to base kAYO’s comparison on the results discussed in the
related research papers of existing techniques.

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

9
Tech- Designed for Tested False Evalua-
nique Enviro- Threat on Pos tion set

nment rate size

[20] Desktop Drive by Drive by 9.9 15000Downloads download only

[53] Desktop Malicious Drive by 13.7 15000JavaScript download only

[39] Desktop Spam URLs Drive by 14.8 15000download only
Union of Desktop Drive by, Drive by 17.1 15000[39], [53] malicious JS, download only
[24], [37] spam URLs

kAYO Mobile Existing Existing mobile 8.1 34914mobile web web threats
threats

TABLE 4: Comparison of kAYO with five existing static
analysis techniques that detect malicious desktop web-
pages. kAYO provides the lowest false positive rate on
an evaluation set twice as large as the one used by other
techniques. kAYO also considers mobile web threats,
whereas, the other techniques are focused on detecting
desktop web threats.

Technique
Time in sec Considers

Feature Classi- mobile
extraction fication webpages?

[20] 3.06 0.24 7
[53] 0.15 0.034 7
[39] 3.56 0.020 7

Union of N/A N/A 7[24], [37], [39], [53]
kAYO 0.016 0.0002 3

TABLE 5: Comparison of kAYO with five existing static
analysis techniques that detect malicious desktop web-
pages. kAYO’s feature extraction process is 10 times
faster than the fastest existing technique [53] and classi-
fication time is 100 times faster than the fastest existing
technique [39]. kAYO is the only technique that considers
mobile specific features of webpages.

speed and performance of Cantina given in related
research papers [56], [59]. Table 3 summarizes the com-
parisons. Cantina provides better true positive rate and
comparable false positive rate against kAYO. However,
there are several drawbacks to Cantina. First, Cantina’s
depends on the results of Google’s search engine. More-
over, Cantina assumes that every webpage not ranked
by Google is malicious. We argue that this is a strong
assumption and might lead to a high false positive
rate. Additionally, this methodology prevents Cantina
from analyzing webpages not visited by Google’s Safe
Browsing kAYO does not depend on any external tools
and can detect malicious webpages missed by Google.
Second, kAYO’s feature extraction process is over two
orders of magnitude faster than Cantina. On an average,
kAYO takes 0.016 seconds to extract the features of a
webpage and Cantina takes 2.82 seconds. We argue that
this improvement in the speed of analyzing webpages
makes kAYO more usable than Cantina in real-time.
Finally, Cantina works only on webpages written in
English due to its heuristic features whereas kAYO can
work with webpages written in any language.

 0

 20

 40

 60

 80

 100

Ex1: Previous features Ex2: kAYO’s features

A
cc

ur
ac

y
(%

)

Train
Test

Fig. 4: Ex1: Results of a model trained on desktop
webpages using desktop features studied in earlier tech-
niques and then tested on mobile webpages. Ex2: Results
of a model trained on mobile webpages by adding mo-
bile specific features to the feature set and tested on mo-
bile webpages. Ex1 shows that a model trained on desk-
top pages using features from related work performs
poorly when applied to mobile webpages. However,
when a model is trained with the same static features
and additional mobile specific features exclusively on a
mobile datatset, the results of testing on a mobile dataset
improve significantly as seen in Ex2.

We also compared kAYO’s performance with existing
static analysis tools that detect non-phishing attacks.
The closest non-commercial tool to kAYO based on the
diversity of features and the scale of the evaluation set
is Prophiler [20]. Prophiler detects drive-by-downloads
on desktop webpages. We compare kAYO’s performance
with the performance numbers of existing static tech-
niques described by Canali et al. [20]. Canali et al.
performed an analysis of 15,000 webpages consisting
of about 5,000 known webpages launching drive-by-
downloads. The contenders of the comparison were
then existing tools detecting malicious JavaScript [24],
[37], [53], drive-by-downloads [20] and spam URLs [39].
Table 4 and Table 5 show the comparison of performance
of kAYO with each of these techniques. kAYO provides
the lowest false positive rate over an evaluation set twice
as large as the one used by other techniques as shown in
Table 4. Moreover, kAYO’s feature extraction process is
10 times faster than the fastest existing technique [53]
and classification process is 100 times faster than the
fastest existing technique [39]. Finally, all the existing
techniques are focused on desktop threats, whereas,
kAYO focuses on mobile specific threats. Accordingly,
had we been able to run these tools over our dataset,
they would have performed more poorly.
Need for mobile specific techniques: Because neither
Cantina nor Prophiler were made available to us, we
performed an experiment to demonstrate the need for
new mobile specific models. Intuitively, due to the dis-
parity in the same static features when measured on mo-
bile and desktop webpages (as discussed in Section 3),
and the emergence of new mobile specific features, a

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

10
model trained on desktop webpages will not generate
precise results for mobile webpages. Note that we are
not making claims about the exact performance of each
system against our dataset; rather, we are attempting
to demonstrate (in the absence of either being made
available and in good faith) that previously published
techniques not considering the changes and new features
identified in this work perform significantly worse than
our own when analyzing malicious mobile webpages.

For this experiment, we created a training dataset of
desktop webpages and a test datatset of mobile web-
pages. We statically crawled Alexa top 10,000 webpages
to the two links deep using the desktop Internet Explorer
browser version 9.0 for Windows 7. We obtained the
desktop malicious webpages by monitoring public black-
lists [2], [3], [5] and crawling live URLs two links deep.
We verified ground truth of these URLs using Google
Safe Browsing and VirusTotal. We randomly shuffled
the webpages and chose 10,000 webpages while keeping
the proportion of benign and malicious webpages in the
dataset equivalent to the mobile dataset described in
Section 4.2. We then created a test dataset of 1000 mobile
benign and malicious webpages by randomly selecting
URLs from the larger dataset described in Section 4.2.

We extracted 33 out of the 44 static features in kAYO
from each webpage in the desktop and mobile datasets.
We disregarded the 11 new mobile features used in
kAYO and instead focused our analysis on the 33 fea-
tures previously used in similar desktop static tech-
niques. We note that the goal of this experiment is not
to extract all desktop relevant features used earlier, but
demonstrate that a model trained on features extracted
from desktop webpages does not perform well when
applied to mobile webpages. We believe that these 33
features accurately represent the static features used
in earlier techniques to detect malicious desktop web-
pages [20], [24], [28], [37], [39], [53], [56], [59].

We used logistic regression with regularization to train
a model on the desktop webpage dataset and tested
the model on the mobile dataset. Figure 4 shows the
results of our experiments. Ex1 shows that using 33
features, we achieved 77% accuracy in training on desk-
top webpages. However, when the parameters obtained
from this model were applied to the mobile dataset,
the accuracy reduced significantly to 40%. The difference
between the accuracy of the training and testing dataset is
the important comparison metric in this experiment as it
demonstrates the inability of previous desktop-only models to
accurately characterize mobile webpages. Ex2 simply shows
kAYO’s results (discussed in Section 5.2) of training
and testing on mobile webpages considering mobile
specific features. Both training (91%) and testing (90%)
dataset accuracies improve notably. More importantly,
the accuracies of the training and testing datasets in Ex2
are comparable unlike those in Ex1. These results con-
firm our intuition that mobile specific static techniques
are necessary - without using the new mobile features,
previously proposed techniques perform poorly.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 5 10 15 20 25 30 35 40 45

Pe
ar

so
n

Co
rre

la
tio

n
Co

ef
fic

ie
nt

 (P
CC

)

Feature Number (44 in total)

Newly identified features
Features adopted from other techniques

Fig. 5: The Pearson Coefficient Correlation (PCC) of each
of the features extracted in kAYO with the label (mali-
cious/benign), found using our evaluation dataset. Each
point corresponds to the correlation of a feature with the
label. In total there are 44 points corresponding to the 44
features of kAYO, including the newly identified features
and the ones adopted from existing techniques. The Y
value of each point depicts the predictive power of the
corresponding feature i.e. PCC. The greater the absolute
value of the PCC of a feature, the better predictive power
of the feature. Note that all the PCC values are non-
zero implying that every feature in kAYO’s feature set is
significant and impacts the result of classification.
Proprietary techniques: We note that Google’s Safe
Browsing tool is proprietary and no information can be
retrieved about its performance. Moreover, Google Safe
Browsing is not enabled on mobile browsers at present.
Therefore, even if Google’s tool identifies a mobile
webpage as bad, Chrome and Firefox mobile browser
users do not benefit from this information unlike the
desktop users of these browsers. Even though enabling
Safe Browsing on mobile is an engineering effort, we
later demonstrate the importance of employing a mobile
specific technique such as kAYO.
Significance of kAYO’s feature set: It is important
to observe that kAYO’s feature set has been carefully
created to ensure relevance to mobile webpages and neg-
ligible extraction time. We experimentally demonstrate
the significance of kAYO’s features using the Pearson
product-moment Correlation Coefficient (PCC). PCC is a
measure of the linear dependence between two variables
giving a value between +1 and −1 inclusive [52]. In other
words, PCC provides information about the predictive
power of a feature over the classification result. The
larger the absolute value of the PCC of a feature, the
more its predictive power. For example, a feature with
PCC -0.6 is a better predictor of whether a webpage is
malicious than a feature with PCC 0.21. It is important to
note that identifying features with very high PCC values
is extremely difficult given the hundreds of different
components of webpages and the diversity of threats.

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

11
We find the PCC between each feature in kAYO’s

feature set and the label (benign/malicious), from
the test set used for evaluation. Intuitively, if kAYO’s
features are significant, then the absolute value of the
PCC of each feature with the label must be non-zero.
Figure 5 shows the plot of the PCC of each of the 44
features of kAYO with the label. The circles show the
PCC of the newly identified features of kAYO and the Xs
depict the PCC of features adopted from earlier works.
As seen in the Figure, all the PCC values are non-zero,
implying that every feature in kAYO is significant.

Comparison with existing browser tools: Browser ex-
tensions and plugins help protect users from visiting
malicious websites. The most prevalent threat on the mo-
bile web at present is phishing. Therefore, we surveyed
the most popular anti-phishing Firefox desktop exten-
sions for comparison with kAYO. These 33 extensions
were selected by searching for the keyword ‘phishing’
on the Firefox extension store. Most of the extensions
were certificate verifiers, password protectors or file
protectors. We did not find any extensions performing
content-based static analysis. We disregarded extensions
that were built only for one specific website (e.g., FB
Phishing Protector and LibertyGuard) or were no longer
supported (e.g. Nophish). We then chose the top five ex-
tensions (Anti Phishing 1.0, DontPhishMe, Netcraft Tool-
bar, PhishTank SiteChecker and Phish Tester) based on
the number of users for further analysis. We randomly
selected a set of 10 known malicious URLs from our
dataset and queried each tool with the URLs. PhishTank
SiteChecker simply queried PhishTank and returned the
result, detecting three of the 10 URLs. Netcraft detected
three out of the 10 URLs as well, two of which were
also detected by Phish Advisor. Anti Phishing 1.0 de-
tected one URL. Phish Tester and DontPhishMe did not
generate any results.

We also tested the freely available trial version of the
Lookout safe browsing tool [4]. Lookout is one of the
most popular security applications available for mobile
devices. This tool protects users of the Android mobile
and the Chrome mobile browsers from phishing scams
and malicious links on the mobile web. We browsed the
same 10 known malicious URLs from both the Android
mobile and Chrome mobile browser on a device running
the Android 4.0 operating system. We were presented with
alerts for only two out of the 10 URLs by Lookout, while kAYO
detected eight out of the 10 webpages.

Given the paucity of a working extension to detect
different threats on mobile webpages, and the unavail-
ability of signature-based tools such as Google Safe
Browsing for mobile browsers, we developed a mobile
browser extension using kAYO.

6 BROWSER EXTENSION

Building a browser extension based on kAYO adds value
for two reasons. First, the mobile specific design of kAYO
enables detection of new threats previously unseen by

existing services (e.g., pages including spam phone num-
bers). Second, building an extension allows immediate
use of our technique. We discuss other potential avenues
of adopting kAYO in Section 7.3.

We developed a browser extension using kAYO for
Firefox Mobile9, which informs users about the mali-
ciousness of the webpages they intend to visit. Our
goal was to build an extension that runs in real-time.
Therefore, instead of running the feature extraction pro-
cess in a mobile browser, we outsourced the processing
intensive functions to a backend server. Figure 6 shows
the architecture of the extension. User enters the URL
he wants to visit in the extension toolbar. The extension
then opens a socket and sends the URL and user agent
information to kAYO’s backend server over HTTPS. The
server crawls the mobile URL and extracts static features
from the webpage. This feature set is input to kAYO’s
trained model, which classifies the webpage as malicious
or benign. The output is then sent back to the user’s
browser in real-time. If the URL is benign according to
kAYO, the extension renders the intended webpage in
the browser automatically. Otherwise, a warning mes-
sage is shown to the user recommending them not to
visit the URL.

Users of the extension will browse both mobile specific
and desktop webpages since not all websites offer a
mobile specific version. Recall that being a mobile spe-
cific technique, kAYO does not perform well on desktop
webpages. Consequently, processing all pages of interest
through kAYO might output incorrect results for desktop
webpages. To address this problem, the backend server
first detects whether the intended webpage is mobile
specific using the same method explained in Section 4.2.
The webpage is processed by kAYO only if it is mobile.
The desktop webpages are analyzed using Google Safe
Browsing. Note that any other existing technique for de-
tecting desktop malicious webpages can be used instead
of Google Safe Browsing.

We performed manual analysis of 100 randomly se-
lected URLs (90 benign and 10 malicious) from our test
dataset and measured the performance of kAYO in real-
time. On an average, an output was rendered in 829
ms on average from the time the user entered a URL
in kAYO’s toolbar. We argue that the good performance
is due to careful selection of quickly extractable features
and lower complexity of mobile webpages as compared
to desktop webpages. The maximum delay in result gen-
eration was seen in scraping the input webpage from its
respective server. Caching already scraped webpages can
reduce this delay, as we demonstrated experimentally,
by an average of 85%. Figure 7 shows a screen shot of
our browser extension at work. We plan to make the
extension available publicly post publication.

9. Firefox Mobile is one of the very few mainstream mobile browsers
that support browser extensions. Similar extensions can easily be
developed on other mobile browsers once supported.

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

12

kAYO's toolbar:
m.example.com

kAYO server

kAYO's Model

Internet

3) HTTP request
m.example.com

4) HTTP response

Firefox Mobile
Browser

2) URL=m.example.com,
User agent string

1) User enters
URL

8) Output
Benign/malicious

6) mobile
page

6) desktop
page

Extract
features

Google Safe
Browsing

7) Output 7) Output

5) Is page mobile?

Yes No

Fig. 6: Architecture of the mobile browser extension based on kAYO. User enters the URL he wants to visit in the
extension toolbar and receives a response in real-time from our backend server about the maliciousness of the URL.
If the URL is benign according to kAYO, the page of interest is rendered in the browser. Otherwise, the user is
shown a warning message to not visit the URL.

(a) (b)

(c) (d)

Crawl input
webpage

Input parameters:
URL and user agent

Result

Warning
generated
by kAYO

Proceeding
options

kAYO
extension

toolbar

Fig. 7: (a): Chrome desktop browser informing the user of a potentially malicious webpage. The webpage is a
known mobile phishing webpage. (b): The same webpage when rendered on the Chrome mobile browser, whose
users are the real targets, does not provide any warning. (c): kAYO extension running on the Firefox mobile browser
detects the webpage as malicious and warns the user. (d): Screenshot of command line processing at the extension
server.

7 DISCUSSION

kAYO detected a number of malicious webpages in the
wild that were not found by existing techniques. We
investigate these webpages in detail and then describe
the limitations and future work of kAYO.

7.1 Investigating False Positives

We used Google Safe Browsing and VirusTotal for es-
tablishing ground truth of our dataset for training and

evaluating kAYO. However, such dynamic analysis tech-
niques execute webpages on desktop browsers running
on virtual machines and miss mobile specific threats. To
validate our intuition, we performed manual analysis on
webpages that were identified as malicious by kAYO,
but were tagged as benign by Google Safe Browsing
and VirusTotal. Performing manual in-depth analysis for
all webpages classified as malicious by kAYO was not
feasible. Therefore, we chose a random subset of 100
URLs from the false positives obtained by running kAYO
on the test dataset in Section 5.2.

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

13
We verified each of the 100 URLs by visiting them

manually from an Android mobile browser version 4.0.
We found 10 URLs to be suspicious. These 10 URLs
contained survey pages to win iPads or Visa gift cards,
uncommon online electronic equipment stores and stores
selling health-related products. Most URLs did not have
a Google page rank. One particular webpage prompted
a user to download a binary file masquerading as a flash
update. We downloaded and found the binary file to be
malicious by querying VirusTotal. Another webpage had
a known bank fraud phone number prefixed with the
tel: API. Two out of the 10 suspicious URLs were also
marked as suspicious by the Lookout safe browsing tool.
We have reported these 10 webpages to PhishTank. Five
out of the 10 URLs that we submitted have already been
validated by PhishTank and marked as malicious. All 10
URLs went offline within one week of submission. This
further strengthens our intuition since phishing URLs
are usually short lived [31], [44]. We note that PhishTank
might not validate some of the URLs we submitted. This
is because, PhishTank’s validation process is based on
crowdsourcing and threats such as known bank fraud
numbers on a website might not be detected without
the availability of tools such as Pindrop PRS [7].

7.2 Cross-channel threats
We found 173 unique mobile webpages in our dataset
(including training and testing) that hosted API prefixed
known fraudulent phone numbers and were all tagged
as benign by Google Safe Browsing and VirusTotal.
These numbers are associated with a number of known
financial fraud campaigns against a number of different
major US-based institutions) according to our queries to
the Pindrop Security PRS [7]. These results show that
adversaries have begun to exploit such cross-channels
(e.g., create a phishing webpage and include a fraud
phone number) to attack mobile users. Moreover, these
experiments suggest that the false positive rate of kAYO
might be lower in reality, given that mechanisms fail to classify
such pages as malicious. We intend to conduct a further
analysis of such attacks in our future work.

7.3 Limitations and Future Work
The expected concerns of kAYO are similar to those of
existing malicious website detection tools using static
analysis. Evasion by mimicking the features we consider
to be good indicators of a legitimate webpage can be
used to defeat kAYO. However, our comprehensive set
of features makes it harder to evade kAYO, as seen from
our evaluation over a large dataset.

We statically crawled the top million websites of
Alexa. Therefore, we did not collect webpages that use
JavaScript to detect and redirect to the mobile webpage.
We have also missed the mobile webpages represented
by ways other than the ones used by the top 1,000
websites. We do not make any claims about gathering all
mobile webpages from Alexa top one million. However,

given the large set of webpages collected, we believe that
our dataset is a representative cross section. Finally, the
focus of this work was on mobile webpages designed
for phones. We defer the analysis of webpages built for
tablets to future work.

kAYO’s features reflect current trends in mobile ma-
licious webpages. The potential of bad activity in the
mobile web could increase yet further over time. kAYO’s
feature set and model will need to be updated, according
to the new threats faced by the mobile web in the
future. However, such updates are necessary in all static
techniques that aim to detect new threats.

In-depth dynamic analysis of webpages may provide
additional important details. However, because such ap-
proaches incur significantly higher costs, this approach
conflicts with our design goal of creating a real-time
detector. Accordingly, we leave the significant challenge
of efficient operation of such tools to future work.

Using signature based blacklist approaches such as
Google Safe Browsing might improve the performance
of kAYO’s browser extension. A blacklist can be synchro-
nized with kAYO’s extension server and enforced locally.
Although such techniques might reduce the average
delay in page rendering, they will also preclude from
protection against webpages that change dynamically
defeating kAYO’s goal of real-time evaluation. We plan
to investigate performance enhancing designs that pre-
serve real-time evaluation in future work.

8 CONCLUSION

Mobile webpages are significantly different than their
desktop counterparts in content, functionality and lay-
out. Therefore, existing techniques using static features
of desktop webpages to detect malicious behavior do not
work well for mobile specific pages. We designed and
developed a fast and reliable static analysis technique
called kAYO that detects mobile malicious webpages.
kAYO makes these detections by measuring 44 mobile
relevant features from webpages, out of which 11 are
newly identified mobile specific features. kAYO provides
90% accuracy in classification, and detects a number
of malicious mobile webpages in the wild that are not
detected by existing techniques such as Google Safe
Browsing and VirusTotal. Finally, we build a browser
extension using kAYO that provides real-time feedback
to users. We conclude that kAYO detects new mobile
specific threats such as websites hosting known fraud
numbers and takes the first step towards identifying new
security challenges in the modern mobile web.

ACKNOWLEDGMENTS

The authors would like to thank EldoS for access to their
driver framework and VirusTotal for providing malware
samples. This work was supported in part by the US
National Science Foundation under grant numbers CNS-
1464087 and CNS-1464088. Any opinions, findings, and

1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2575828, IEEE
Transactions on Mobile Computing

14
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of the NSF.

REFERENCES
[1] Gnu octave: high-level interpreted language. http://www.gnu.org/

software/octave/.
[2] hphosts, a community managed hosts file. http://hphosts.gt500.org/hosts.

txt.
[3] Joewein.de LLC blacklist. http://www.joewein.net/dl/bl/dom-bl-base.

txt.
[4] Lookout. https://play.google.com/store/apps/details?hl=en&id=com.

lookout.
[5] Malware Domains List. http://mirror1.malwaredomains.com/files/

domains.txt.
[6] Phishtank. http://www.phishtank.com/.
[7] Pindrop phone reputation service. http://pindropsecurity.com/

phone-fraud-solutions/phone reputation service prs/.
[8] Scrapy — an open source web scraping framework for python. http://

scrapy.org/.
[9] VirusTotal. https://www.virustotal.com/en/.
[10] Google developers: Safe Browsing API. https://developers.google.com/

safe-browsing/, 2012.
[11] Alexa, the web information company. http://www.alexa.com/topsites,

2013.
[12] dotmobi. internet made mobile. anywhere, any device. http://dotmobi.

com/, 2013.
[13] C. Amrutkar, K. Singh, A. Verma, and P. Traynor. VulnerableMe: Measuring

systemic weaknesses in mobile browser security. In Proceedings of the
International Conference on Information Systems Security (ICISS), 2012.

[14] C. Amrutkar, P. Traynor, and P. C. van Oorschot. Measuring SSL indicators
on mobile browsers: Extended life, or end of the road? In Proceedings of the
Information Security Conference (ISC), 2012.

[15] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building
a dynamic reputation system for DNS. In Proceedings of the 19th USENIX
Conference on Security (SECURITY), 2010.

[16] V. A. Balasubramaniyan, A. Poonawalla, M. Ahamad, M. T. Hunter, and
P. Traynor. Pindr0p: using single-ended audio features to determine call
provenance. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS), 2010.

[17] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE : Finding
malicious domains using passive DNS analysis. In Proceedings of the 18th
Annual Network and Distributed System Security Symposium (NDSS), 2011.

[18] M. Boodaei. Mobile users three times more vulnerable to phishing attacks.
http://www.trusteer.com/blog/mobile-users-three-
times-more-vulnerable-to-phishing-attacks, 2011.

[19] M. Butkiewicz, Z. Wu, S. Li, P. Murali, V. Hristidis, H. V. Madhyastha,
and V. Sekar. Enabling the transition to the mobile web with websieve. In
Proceedings of the 14th Workshop on Mobile Computing Systems and Applications
(HotMobile), 2013.

[20] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a fast filter for
the large-scale detection of malicious web pages. In Proceedings of the 20th
International Conference on World Wide Web (WWW), 2011.

[21] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. MAST: Triage for Market-
scale Mobile Malware Analysis. In Proceedings of the ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec), 2013.

[22] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 2006.

[23] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of Android
application security. In Proceedings of the 20th USENIX Security Symposium,
2011.

[24] B. Feinstein and D. Peck. Caffeine monkey: Automated collection, detection
and analysis of malicious javascript. In Proceedings of the Black Hat Security
Conference, 2007.

[25] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. In Proceedings of the 18th ACM conference on Computer and
communications security, 2011.

[26] A. P. Felt and D. Wagner. Phishing on mobile devices. In Web 2.0 Security
and Privacy (W2SP), 2011.

[27] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
re-delegation: attacks and defenses. In Proceedings of the 20th USENIX
conference on Security, 2011.

[28] I. Fette, N. Sadeh, and A. Tomasic. Learning to detect phishing emails. In
Proceedings of the 16th International Conference on World Wide Web (WWW),
2007.

[29] S. Gajek, A.-R. Sadeghi, C. Stüble, and M. Winandy. Compartmented
security for browsers or how to thwart a phisher with trusted computing.
In Second International Conference on Availability, Reliability and Security
(ARES), 2007.

[30] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A framework for detection
and measurement of phishing attacks. In Proceedings of the ACM workshop
on recurring malcode, 2007.

[31] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring and detecting
fast-flux service networks. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2008.

[32] A. Ikinci, T. Holz, and F. Freiling. Monkey-spider: Detecting malicious
websites with low-interaction honeyclients. In Proceedings of Sicherheit,
Schutz und Zuverlassigkeit, 2008.

[33] L. Invernizzi, S. Benvenuti, M. Cova, P. M. Comparetti, C. Kruegel, and
G. Vigna. Evilseed: A guided approach to finding malicious web pages. In
Proceedings of the 2012 IEEE Symposium on Security and Privacy, 2012.

[34] P. Kolari, T. Finin, and A. Joshi. Svms for the blogosphere: Blog identi-
fication and splog detection. In Proceedings of AAAI Spring Symposium on
Computational Approaches to Analysing Weblogs, 2006.

[35] A. Le, A. Markopoulou, and M. Faloutsos. Phishdef: Url names say it all.
In Proceedings of IEEE International Conference on Computer Communications
(INFOCOM), 2011.

[36] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W. Lee. The core of
the matter: Analyzing malicious traffic in cellular carriers. In Proceedings
of Network and Distributed System Security Symposium (NDSS), 2013.

[37] P. Likarish, E. Jung, and I. Jo. Obfuscated malicious javascript detection
using classification techniques. In Proceedings of Malicious and Unwanted
Software (MALWARE), 2009.

[38] C. Ludl, S. Mcallister, E. Kirda, and C. Kruegel. On the effectiveness of
techniques to detect phishing sites. In Proceedings of the 4th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), 2007.

[39] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond blacklists: Learning
to detect malicious web sites from suspicious URLs. In Proceedings of the
SIGKDD Conference, 2009.

[40] D. K. McGrath and M. Gupta. Behind phishing: an examination of phisher
modi operandi. In Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2008.

[41] E. Medvet, E. Kirda, and C. Kruegel. Visual-similarity-based phishing
detection. In Proceedings of International Conference on Security and Privacy
in Communication Netowrks (SecureComm), 2008.

[42] Y. min Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated web patrol with strider honeymonkeys: Finding web
sites that exploit browser vulnerabilities. In Proceedings of the Networking
and Distributed Systems Security (NDSS), 2006.

[43] A. Mohaisen and O. Alrawi. AV-Meter: An Evaluation of Antivirus Scans
and Labels. In Proceedings of the 4th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2014.

[44] T. Moore, R. Clayton, and H. Stern. Temporal correlations between spam
and phishing websites. In Proceedings of the 2nd USENIX conference on Large-
scale exploits and emergent threats: botnets, spyware, worms, and more (LEET),
2009.

[45] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A crawler-based
study of spyware on the web. In Proceedings of Network and Distributed
System Security Symposium (NDSS), 2006.

[46] J. Nazario. Phoneyc: a virtual client honeypot. In Proceedings of the
2nd USENIX conference on Large-scale Exploits and Emergent Threats: botnets,
spyware, worms, and more (LEET), 2009.

[47] J. Nazario and T. Holz. As the net churns: Fast-flux botnet observations. In
Proceedings of 3rd International Conference on Malicious and Unwanted Software
(MALWARE), 2008.

[48] E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi. Fluxor: Detecting
and monitoring fast-flux service networks. In Proceedings of the 5th Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2008.

[49] R. Perdisci, I. Corona, D. Dagon, and W. Lee. Detecting malicious flux
service networks through passive analysis of recursive DNS traces. In
Proceedings of Annual Computer Security Applications Conference (ACSAC),
2009.

[50] G. Podjarny. Mobile web performance op-
timization. http://www.slideshare.net/blazeio/
mobile-web-performance-optimization-tips-and-tricks.

[51] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your
iframes point to us. In Proceedings of the 17th USENIX conference on Security
(SECURITY), 2008.

[52] L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation
coefficient. The American Statistician, 1988.

[53] C. Seifert, I. Welch, and P. Komisarczuk. Identification of malicious web
pages with static heuristics. In Telecommunication Networks and Applications
Conference, 2008.

[54] F. Weimer. Passive DNS replication. 2005.
[55] C. Whittaker, B. Ryner, and M. Nazif. Large-scale automatic classification

of phishing pages. In Proceedings of the Networking and Distributed Systems
Security (NDSS), 2010.

[56] G. Xiang, J. Hong, C. P. Rose, and L. Cranor. Cantina+: A feature-rich
machine learning framework for detecting phishing web sites. ACM
Transactions on Information and System Security (TISSEC), 14(2), Sept. 2011.

[57] C. Yue and H. Wang. Characterizing insecure javascript practices on the
web. In Proceedings of the 18th international conference on World Wide Web
(WWW), 2009.

[58] B. Zdrnja, N. Brownlee, and D. Wessels. Passive monitoring of DNS
anomalies. In Proceedings of the 4th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2007.

[59] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: a content-based approach
to detecting phishing web sites. In Proceedings of the 16th international
conference on World Wide Web (WWW), 2007.

